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Fig. 1. We compare the equal-time variance of different estimators in a scene containing participating media. We show the full light transport in the scene
(left), single scattering (middle/right, top half) and multiple scattering volumetric transport (middle/right, bottom half). Our estimators (middle) provide
significant variance reduction compared to prior density estimators (right) at equal render time.

We generalize photon planes to photon surfaces: a new family of unbiased
volumetric density estimators which we combine using multiple importance
sampling. To derive our new estimators, we start with the extended path
integral which duplicates the vertex at the end of the camera and photon
subpaths and couples them using a blurring kernel. To make our formulation
unbiased, however, we use a delta kernel to couple these two end points.
Unfortunately, sampling the resulting singular integral using Monte Carlo
is impossible since the probability of generating a contributing light path
by independently sampling the two subpaths is zero. Our key insight is
that we can eliminate the delta kernel and make Monte Carlo estimation
practical by integrating any three dimensions analytically, and integrating
only the remaining dimensions using Monte Carlo. We demonstrate the prac-
ticality of this approach by instantiating a collection of estimators which
analytically integrate the distance along the camera ray and two arbitrary
sampling dimensions along the photon subpath (e.g., distance, direction,
surface area). This generalizes photon planes to curved “photon surfaces”,
including new “photon cone”, “photon cylinder”, “photon sphere”, and mul-
tiple new “photon plane” estimators. These estimators allow us to handle
light paths not supported by photon planes, including single scattering, and
surface-to-media transport. More importantly, since our estimators have
complementary strengths due to analytically integrating different dimen-
sions of the path integral, we can combine them using multiple importance
sampling. This combination mitigates singularities present in individual
estimators, substantially reducing variance while remaining fully unbiased.
We demonstrate our improved estimators on a number of scenes containing
homogeneous media with highly anisotropic phase functions, accelerating
both multiple scattering and single scattering compared to prior techniques.
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1 INTRODUCTION
Accurate and efficient simulation of light transport in participating
media is a challenging yet important problem in fields ranging from
the movie industry, medical imaging, video games and even nuclear
reactor design. Solving the governing rendering equation [Immel
et al. 1986; Kajiya 1986] and equation of radiative transfer [Chan-
drasekhar 1960] has been the subject of substantial research over
the past decades [Cerezo et al. 2005; Novák et al. 2018a,b], resulting
in a wealth of rendering algorithms that tackle this problem.
Unbiased rendering methods such as path tracing [Kajiya 1986]

are among the oldest forms of Monte Carlo (MC) light transport, and
they remain popular [Pharr et al. 2016; Christensen and Jarosz 2016;
Fascione et al. 2017] due to their simplicity and ability to render
images where the only error is noise. Naive path tracing converges
poorly in difficult lighting scenarios, so subsequent variants such
as bidirectional path tracing (BPT) [Veach and Guibas 1994, 1997;
Lafortune and Willems 1993] augment it with a diverse set of com-
plementary path sampling strategies which can be combined using
multiple importance sampling (MIS) [Veach and Guibas 1995].

Photon density estimation using points [Jensen 1996; Jensen and
Christensen 1998] or beams [Jarosz et al. 2008, 2011a] gains effi-
ciency partly from the path reuse permitted by the density estima-
tion framework. This efficiency, however, comes at the cost of bias,
which manifests as blurring in the image. In the same spirit as BPT,
recent work has sought to combine some of these estimators with
unbiased methods [Georgiev et al. 2012; Hachisuka et al. 2012] and
each other [Křivánek et al. 2014] using MIS to leverage their com-
plementary strengths. Unfortunately, this is made difficult by the
fact that photon mapping and unbiased path sampling approaches
operate in path spaces of different dimension, and the resulting com-
bination remains biased. Most recently, Bitterli and Jarosz [2017]
developed the first unbiased photon density estimators in the form
of photon planes and volumes; however, these unbiased estimators
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1) suffer from singularities, and 2) require at least two bounces in
the medium past any surface, relegating the remaining transport to
other (potentially) biased or inferior techniques (Fig. 1 right).

In this paper, we present a general framework for deriving unbi-
ased volumetric density estimators by first elevating the problem to
the extended path integral [Hachisuka et al. 2012, 2017] and then
analytically integrating out any three of its dimensions. We identify
a particularly practical subset of estimators enabled by our theory,
which we call photon surfaces, representing the surface arising from
sweeping out the location of a photon for all possible values of two
of its sampling dimensions (e.g., distance, direction, surface area).
Each choice of these two analytically integrated dimensions re-
sults in a different type of estimator with complementary strengths
and singularities, including new “photon cone”, “photon cylinder”,
“photon sphere”, and multiple new “photon plane” estimators. Our
estimators support a wider range of volumetric transport, including
single-scattering, which was previously impossible with unbiased
density estimators (Fig. 1 top). Since our estimators operate in stan-
dard path space, we can combine them using MIS while avoiding
the complexities of bridging different dimensionalities of path space.
This results in a more robust rendering algorithm which mitigates
singularities in an unbiased way (Fig. 1 center). We also introduce
a generalized version of MIS that allows for combining an infinite
continuum of strategies arising from our theory, compared to the
discrete number of strategies considered by standard MIS. Finally,
we show how existing unbiased path sampling techniques such as
next-event estimation, BPT and virtual point lights (VPLs) [Dachs-
bacher et al. 2014] can be derived from our framework through a
particular choice of dimensions for analytic integration. This means
that we can interpret our approach more generally as a way to
derive unbiased path sampling strategies, opening the possibility
of combining our estimators more broadly with existing unbiased
path sampling methods for increased efficiency and robustness.

1.1 Related Work
We focus primarily on connections to prior work in volumetric
density estimation and analytic integration, and refer to Pharr et al.
[2016] and Novák et al. [2018a] for a broader survey of recent (volu-
metric) rendering techniques.

Density estimation has a long history of using higher-dimensional
samples to reduce variance and bias, starting with beams [Havran
et al. 2005; Jarosz et al. 2008, 2011a; Sun et al. 2010], their progres-
sive [Hachisuka et al. 2008] variants [Jarosz et al. 2011b], and more
recent planes and volumes [Bitterli and Jarosz 2017]. These higher
dimensional samples were traditionally understood in terms of the
limit process or expected value of free-flight sampling, but we can
express themmore generally in our framework as techniques that an-
alytically pre-integrate two (for beams) or more (for planes/volumes)
consecutive distance dimensions prior to MC integration. Beam es-
timators collapse only two of the three singular dimensions, and
subsequently blur has to be introduced to permit MC integration.
In contrast, photon planes allow for unbiased estimation because
they collapse all singular dimensions. Our formulation allows us to
pick non-consecutive distance dimensions to obtain complementary
photon planes, or angular/area dimensions to obtain novel photon

surfaces, all of which can be combined with MIS to robustly mitigate
the singularities present in any one estimator alone. Our estimators
are consistent with the density estimation framework and can be
combined with orthogonal approaches such as gradient domain ren-
dering [Lehtinen et al. 2013; Kettunen et al. 2015], as has previously
been shown for beam/plane estimators [Gruson et al. 2018].
Analytic integration of parts of the path integral has previously

been proposed for a wide range of applications such as anti-aliasing
[Jones and Perry 2000], visibility [Gribel et al. 2010, 2011; Barringer
et al. 2012; Nowrouzezahrai et al. 2014; Billen and Dutré 2016], depth
of field [Tzeng et al. 2012], single scattering [Sun et al. 2005; Pegoraro
and Parker 2009], and area lighting [Arvo 1995b,a; Chen and Arvo
2000, 2001; Belcour et al. 2018]. These have also been combined
with more general Monte Carlo integration using ratio [Heitz et al.
2018] or control variates estimators [Belcour et al. 2018]. Recent
theoretical analyses [Sun et al. 2013; Singh et al. 2017; Singh and
Jarosz 2017] have explained how such techniques reduce variance
and improve convergence rate by smoothing the integrand prior
to Monte Carlo integration. Similar to prior work, we also rely on
analytic integration to derive our estimators. In contrast however,
our formulation begins with the extended path space [Hachisuka
et al. 2012, 2017], which dramatically simplifies the problem by
ensuring that the integrand is singular and all required integrals
can be computed easily in closed form. The resulting expressions
are remarkably simple and resemble generalized geometry terms
rather than cumbersome antiderivatives.
Surprisingly, unbiased path sampling techniques such as BPT,

VPLs and next-event estimation can also be formulated in our frame-
work as the result of analytic integration of parts of the extended
path integral. Related techniques such as virtual ray lights [Novák
et al. 2012b,a] and joint importance sampling of three-segment
connections [Georgiev et al. 2013] are also the result of analytic
integration (i.e. marginalization), although they do not map directly
to our theory. More generally, we can view our approach as a way
to generate new parametrizations of paths, and the weight of our
estimators then directly corresponds to the geometry factor of our
parametrization. This is comparable to previous work on path mani-
folds [Jakob 2013], which introduces a reparametrization of specular
chains with a corresponding generalized geometry factor.

2 BACKGROUND
We begin by defining our notation and briefly reviewing volumetric
light transport in the extended path integral framework [Veach 1997;
Hachisuka et al. 2017].

2.1 Path Integral Framework
In the path integral framework [Veach 1997; Pauly et al. 2000], the
intensity of a pixel I is defined as the integral

I =

∫
Ξ
f (z) dµ(z) , (1)

which considers the measurement contribution function f (z) of
all paths z over the space Ξ of all possible light transport paths
connecting light sources to the sensor.
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Path. Since we derive our estimators from photon mapping, we
express them initially in an extended path space [Hachisuka et al.
2017] where a complete light transport path z = x y consists of two
disconnected subpaths: a photon subpath x = (xl . . . x0) where ver-
tex xl resides on a light source, and a camera subpath y = (y0 . . . yk )
where yk resides on the sensor (see figure below).

x0

x1

x2

xl−1

xl
ω1

ft (t1)

fω (ω1) fω (ψ1)

ft (s1)

y0

y1

yk−1
ykψ1

ψk

WeLe

Note that we number the subpath quantities starting at the dupli-
cated connection vertex (y0x0). Furthermore, we use ωi and ti to
denote the direction and distance leaving xi towards xi−1 on a pho-
ton subpath, and similarly,ψi and si for the direction and distance
from yi towards yi−1 on a camera subpath.

Measurement Contribution Function. The measurement contribution
function f (z) along a full path z is the product of the contribution
along each subpath, coupled by the scattering phase function f 1,1ω
and normalized 3D blurring kernel K at the connection:

f (z) = f (x)K(g) f 1,1ω f (y) (2)
where g = x0 − y0 is the offset vector between the endpoints of the
two subpaths. The contribution of the light subpath z is

f (x) =
l∏

i=1
ft (ti )fω (ωi ) , (3)

The propagation contribution ft (ti ) is the product of transmittance
Tr and binary visibility V between xi and xi−1:

ft (ti ) = Tr(ti )V (xi , xi−1) , with Tr(t) = e−σt t (4)
and extinction coefficient σt , assuming homogeneous media. The di-
rectional contribution fω (ωi ) is the scattering coefficient-weighted
phase function σsρp, BSDF ρs or emission Le at vertex xi :

fω (ωi ) =


Le(xi ,ωi ) cosθi i = l

ρs(ωi+1,ωi ) cosθi xi ∈ surface and i < l

σsρp(ωi+1,ωi ) xi ∈ medium and i < l .

(5)

where θi is the angle between outgoing direction and surface normal.
The camera subpath contribution is defined analogously but with
si andψi taking the place of ti and ωi , and the emitted importance
We(yk ,ψk ) taking the place of emitted radiance in Eq. (5).

Path Space and Measure. The integration measure µ is the product
measure over all integration dimensions ξ that control the location
of the path vertices in z:

dµ(z) = dξ =
∏

dξi (6)

where ξi denotes an integration dimension.
Since we chose to define our measurement contribution func-

tion (2) in distance-direction space1, the integration dimensions
1Note that it is possible to convert from distance-direction to the more typical vertex
product measure by incorporating a geometry term for each path segment in x and y.

consist of the starting vertices and collection of distances and direc-
tions along each subpath:

ξ = {xl , t,ω;ψ , s, yk } , (7)

where ω = ωl . . .ω1, t = tl . . . t1 and s = sk . . . s1, ψ = ψk . . .ψ1
denote the sequence of directions and distances along both subpaths.

When ξi is in {t, s}, then it is a one-dimensional variable over the
positive real line, with corresponding measure. When it is one of
{xl , yk ,ω,ψ }, then ξi is a two-dimensional variable corresponding
to surface area or solid angle measure, respectively.
For convenience, we can rewrite our measurement contribution

function in terms of the abstract integration variables ξ :

f (z(ξ )) = f (ξ )K(g(ξ )) f 1,1ω (8)

where f (ξ ) = f (x)f (y) =
∏

f (ξi ), with

f (ξi ) =

{
fω (ξi ) if ξi ∈ {xl , yk ,ω,ψ }
ft (ξi ) if ξi ∈ {t, s}

. (9)

The path integral then takes the following form:

I =

∫
Ξ
f (ξ )K(g(ξ )) f 1,1ω dξ . (10)

Monte Carlo Estimation in Photon Mapping. Photon mapping uses a
normalized 3D kernel and approximates Eq. (10) using Monte Carlo:

⟨I ⟩ ≈
f (ξ )K(g(ξ )) f 1,1ω

p(ξ )
, (11)

where p(ξ ) is the joint PDF of sampling all dimensions in ξ . Unfor-
tunately, the blurring kernel in the integrand leads to bias.

3 A GENERAL FRAMEWORK
In this paper, we are interested in unbiased Monte Carlo estimators.
Theoretically these are possible to express in the extended path
integral framework by shrinking the blurring kernel to a Dirac delta
so a path contributes only when x0 = y0. The kernel becomes:

K(g) = δ3(g) = δ (x(g))δ (y(g))δ (z(g)) (12)

wherex(g),y(g), and z(g) return the Cartesianx-,y- and z-coordinates
of the vector g = x0 − y0, respectively. From the incremental con-
struction of x0 and y0, we know that g is influenced by all the
elements in variable set ξ :

g(ξ ) = x0(ξ ) − y0(ξ ) =

(
xl +

1∑
i=l

tiωi

)
−

(
yk +

1∑
i=k

siψi

)
. (13)

Unfortunately, in practice it is impossible to estimate Eq. (11) in the
presence of this delta kernel since the probability of generating a
valid light path by independently sampling the two subpaths is zero.

Our key insight is that we can eliminate the delta function and
make Monte Carlo practical by splitting the extended path integral
into two parts: three dimensions of which we integrate analytically,
and the remaining we estimate numerically with Monte Carlo. Crit-
ically, the analytic integration eliminates the delta function from
the integrand, allowing subsequent integration with Monte Carlo.
To accomplish this, we introduce a set ξa ⊂ ξ which consists

of three dimensions which we will integrate analytically, and we
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denote the remaining (numerically integrated) dimensions ξn = ξ \

ξa . We can now write the measurement contribution function as the
product of a contribution f (ξa ) depending on ξa , and a contribution
f (ξn ) depending on ξn :

f (ξ ) = f (ξa )f (ξn ) . (14)

The path integral in Eq. (10) can therefore be rewritten as:

I =

∫
Ξn

f (ξn )

∫
Ξa (ξn )

f (ξa )δ
3(g(ξa )) f

1,1
ω dξa︸                                    ︷︷                                    ︸

Ia (ξn )

dξn , (15)

where we use the shorthand g(ξa ) for g(ξa, ξn ) since we only focus
on the analytic part.

With this decomposition, we can construct a virtually unbounded
collection of practical, unbiased Monte Carlo estimators of the form:

⟨I ⟩a,n ≈
f (ξn )Ia (ξn )

p(ξn )
, (16)

where p(ξn ) is the joint PDF of sampling only the dimensions in ξn ,
and Ia (ξn ) is the analytically preintegrated path contribution under-
braced in Eq. (15) for a particular choice of three analytic dimensions
denoted by a. Importantly, different choices of these dimensions
result in distinct hybrid Monte Carlo–analytic estimators.
In the next section we will first model this procedure to red-

erive Bitterli and Jarosz’s unbiased photon planes [2017] which
correspond to analytically integrating three distance sampling di-
mensions. We then (Sec. 5) show how to derive a number of new
“photon surface” estimators arising from different choices of analytic
integration dimensions. With a plethora of new unbiased estima-
tors at our disposal, we then show how to combine their relative
strengths using multiple importance sampling (Sec. 6).

4 PHOTON PLANES
The photon plane estimator employs edges x2x1 and x1x0 to form a
photon plane and a ray along edge y1y0 to query the plane. In our
framework, by setting ξa = {t2, t1, s1}, Ia in Eq. (15) becomes:

Ia =

∫
Ξa

ft (t2) ft (t1) ft (s1)δ
3(g(ξa )) f

1,1
ω dt2dt1ds1 . (17)

The delta kernel is taken with respect to the offset vector g, but to
integrate it out, we need to express it directly in terms of the inte-
gration variables ξa . Composing the delta function with a function
with one root gives us:

δ3(g(ξa )) =
δ3(ξa − ξ ∗a )��� ∂g

∂ξa
(ξ ∗a )

��� = δ3(ξa − ξ ∗a )

Jg
ξa
(ξ ∗a )

, (18)

t∗2

t1

t2 x∗0

x0
x1

x2 s∗1

ψ1

ω1
ω2

y1

t∗1

where ξ ∗a = {t∗2 , t
∗
1 , s

∗
1} are the values

of ξa for which g(ξa ) = 0 (i.e. the val-
ues of ξa at the intersection between the
camera ray and the photon plane, as il-
lustrated to the left), and the denomina-
tor evaluates the change-of-variable Ja-
cobian J from ξa to g at this root.

For this specific choice of ξa , we have:

g(ξa ) = (x2 + ω2t2 + t1ω1)︸                 ︷︷                 ︸
x0(t2, t1)

− (y1 + s1ψ1)︸       ︷︷       ︸
y0(s1)

= x2 − y1 + Aξa (19)

where A = [ω2,ω1,−ψ1]. Then the Jacobian is

Jgt2,t1,s1 (ξ
∗
a ) = det(A) = |(ω2 × ω1) ·ψ1 | . (20)

Inserting Eq. (18) with Eq. (20) into Eq. (17) allows us to preinte-
grate over ξa , eliminating the delta function and yielding:

Ia =
f 1,1ω ft (t

∗
2 )ft (t

∗
1 )ft (s

∗
1)

|(ω2 × ω1) ·ψ1 |
. (21)

After inserting Eq. (21) into Eq. (16) and accounting for the different
notation, this estimator matches Bitterli and Jarosz’s 0D photon
plane estimator exactly.

“Short” vs. “Long” variants. Eq. (21) corresponds to a “long” or “ex-
pected value” [Spanier 1966] estimator which requires evaluating
the distance throughput term (containing the transmittance) at each
hitpoint of a semi-infinite plane. The alternative “short” or “track-
length” [Spanier 1966] variety estimates transmittance with a con-
stant step function that drops to zero beyond the next sampled
propagation distance, effectively turning the semi-infinite plane
into a finite parallelogram. Since the derivation of our Jacobians is
orthogonal to which of these strategies is used, we omit this extra
complexity from our equations. Even though we restrict ourselves
to homogeneous media where the transmittance can be evaluated
analytically, we always use the short variety in our diagrams (and
the final implementation) since their finite extent eases illustration
(and enables more efficient ray intersection).

5 PHOTON SURFACES
In Sec. 3, we introduced a general theory for deriving unbiased
density estimators by picking any three dimensions of the extended
path integral and integrating them analytically. This leads to an
infinite family of new and unusual unbiased estimators. In this
section, we focus on a subset of this family in which exactly two
elements of ξa lie on the photon path, and the remainder is always
s1, i.e. the distance along the last segment of the camera path.

Analytically integrating two dimensions of the photon path while
keeping all other dimensions fixed corresponds to “sweeping” the
last vertex x0 of the photon subpath into a two-dimensional para-
metric surface. Depending on which dimensions are picked, this
surface may be planar, cylindrical, spherical and more (Fig. 2). At
the same time, analytic integration of s1 instantiates a ray query
along the last segment of the camera path.

Interpreting estimators in this manner highlights the advantages
of restricting ourselves to this subset of estimators: Finding the root
of g for these estimators corresponds directly to computing the
intersection between a ray and an analytic primitive. This makes
root finding comparatively easy, and it maps well to current ap-
proaches implementing photon beams or planes. Additionally, it
allows us to take full advantage of existing acceleration structures
for ray-primitive queries.

Further, the Jacobian of such estimators has an intuitive interpre-
tation. Let ξa1 and ξa2 represent the two analytic dimensions on the
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Fig. 2. Our framework allows us to derive new density estimators depending on which dimensions are analytically integrated. Integrating non-consecutive
distance dimensions lead to generalized photon planes (left two); integrating azimuth and distance leads to photon cones and cylinders (middle, middle-right);
integrating azimuth and inclination leads to photon spheres (right).

photon subpath. The Jacobian is then

Jg
ξa
(ξ ∗a ) = det

[
∂x0
∂ξa1

(ξ ∗a ),
∂x0
∂ξa2

(ξ ∗a ),−
∂y0
∂s1

(ξ ∗a )

]
=

���n(ξ ∗a ) ·ψ1��� , (22)
where n = ∂x0/∂ξa1 × ∂x0/∂ξa2 can be interpreted as a scaled
surface normal of the photon primitive that arises from “sweeping”
x0 for all values of ξa1 and ξa2 . The Jacobian of such an estimator is
then simply the dot product of the surface normal and the query ray
direction. Intuitively, this means that photon surfaces will become
brighter when viewed at grazing angles.
It is worth noting that the normal n is not necessarily of unit

length. Indeed, its length encodes how a differential 2D element
stretches and squishes as we map from parametric space (ξa1 , ξa2 )
to a differential area on the photon surface. For example, in the case
of a photon plane, a sheared plane will be brighter as it leads to a
shorter normal and thus smaller Jacobian.

By interpreting these estimators as ray-surface intersections, we
can easily see that it is possible for g to have multiple roots. For
example, in the case of a spherical photon surface (Fig. 2, right), a
ray can hit both the front- and back side of the sphere. This requires
a more general form of Eq. (18) that holds for multiple roots:

δ3(g(ξa )) =
∑
r

δ3(ξa − ξ ∗ra )��� ∂g
∂ξa

(ξ ∗ra )

��� , (23)

where the summation is over all roots ξ ∗ra . In practical terms, this
means that the total contribution of such an estimator is simply the
sum of contributions over all hitpoints. This results in a remark-
ably simple formula for the estimator contribution, generalizing the
photon plane estimator (21) to photon surfaces:

Ia =
∑
r

f 1,1ω f (ξ ∗ra )���n(ξ ∗ra ) ·ψ1
��� . (24)

In the following subsection, we will instantiate this estimator for
specific choices of ξa1 and ξa2 , listing the required scaled surface
normals for Eq. (24) to obtain new photon cone, sphere, cylinder
estimators and more.

5.1 Multiple-Scattering Photon Surfaces
Generalized Photon Planes. Previously we integrated out the last
two propagation distance dimensions ξa1 = t1 and ξa2 = t2 to obtain
an unbiased photon plane (Eq. (21)). We can create a larger family
of generalized, multi-scattering photon plane estimators by simply
choosing any two distance dimensions from t . Let us denote these
ξa1 = ti and ξa2 = tj where l ≥ i > j ≥ 1. Intuitively, integrating

Table 1. Each choice of two dimensions ξa1 , ξa2 leads to a different multiple-
scattering photon surface with corresponding scaled surface normal.

Primitive [ξa1 , ξa2 ] Scaled surface normal n(ξ ∗a )

Plane [ti , tj ] (ωi × ωj )

Sphere [cosθ1,ϕ1] ω∗
1 t

2
1

Cone [t1,ϕ1] (ω∗
1 × (ω∗

1 × ω2)) t∗1
Cylinder [t2,ϕ1] (ω2 × (ω∗

1 × ω2)) t1

Disk [t1, cosθ1]
(ω∗

1×ω2) t ∗1
sin2 θ ∗

1

Toroid [ϕi ,ϕ j ]
(ωi+1×ω∗

i )×(ω
∗
j+1×ω

∗
j ) |(x

∗
0−xi )×ω

∗
i+1 | |(x

∗
0−x

∗
j )×ω

∗
j+1 |

sin θi sin θ j
Hyperboloid [ϕi , t1]

(ωi+1×ω∗
i )×ω

∗
1 |(x

∗
0−xi )×ωi+1 |

sin θi

out these two dimensions sweeps the photon position x0 over the
plane spanned by the corresponding directions ωi and ωj (see Fig. 2,
left). We provide a full derivation in the supplemental document,
but the resulting scaled surface normal is simply ωi × ωj (instead
of ω2 × ω1), as listed in Table 1. Inserting this surface normal into
Eq. (24) gives us a generalized photon plane estimator.

Photon Spheres. It is also possible to integrate out directional dimen-
sions. For instance, analytically integrating ω1 can be thought of as
sweeping the photon position x0 over all 4π steradians centered at
x1, resulting in a spherical photon surface (see Fig. 2, right). The sur-
face normal (see Table 1) is simply the normal of the sphere ω∗

1 , but
scaled by its squared radius t21 to account for the change from solid
angle (unit sphere) to the surface area of a non-unit sphere.2 Just
as with generalized photon planes, we are not limited to choosing
the last directional domain, but can choose an arbitrary ωi along
the path to obtain different photon sphere estimators. We include a
full derivation in the supplemental document and list the resulting
normal that needs to be inserted into Eq. (24) in Table 1.

Photon Cones, Cylinders, and beyond. By decomposing a direction
ωi into spherical angles ϕi , cosθi , we can mix and match an analytic
distance dimension with a polar or azimuthal angle. Simultaneously
spinning the photon x0 along ϕi and sweeping along distance ti
results in a photon cone, while choosing ϕi and the distance along
the previous segment ti+1 leads to a photon cylinder (see Fig. 2,
middle). In general, it is possible to mix and match the angles and
distances from different bounces, producing more general photon
toroids and hyperboloids. We list the scaled surface normals for
several options in Table 1.

2Integrating both direction and distance at a vertex leads to an infinite “spherical photon
volume”, whose Jacobian is exactly equivalent to the standard geometry term for next-
event estimation, VPLs, or shadow rays in BPT. This means all of these techniques can
be derived from our framework, for a particular choice of integration dimensions.
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5.2 Single-Scattering Photon Surfaces
Since a photon plane estimator Eq. (21) needs at least two propaga-
tion distances along the photon subpath, it cannot handle single scat-
tering. Ourmore general photon surface estimator (24) can, however,
support single scattering since it allows us to choose other analytic
integration dimensions. More concretely, any photon surface that
integrates at most one distance sampling dimension analytically
can be used for single scattering.

Photon Cones and Spheres. Previously, multiple scattering photon
cones and spheres resulted from integrating the last polar angle
cosθ1 and distance t1 or the last sampled solid angle ω1 on the
photon path. When l = 1, these photon surfaces simulate single
scattering. For photon cones, the apex will be a position on the light
source, and spheres would generalize to photon spherical caps for
spot lights and photon hemispheres for area light sources, where
Le replaces the phase function in the path contribution.

Photon Surface Area Lights. So far we have considered directional
and propagation distance dimensions for analytic integration, but
an as-of-yet unexploited possibility is the surface area of the light
source itself. Just like solid angle ω, the starting position xl of the
photon path is a two-dimensional variable. Analytically integrating
these two dimensions corresponds to sweeping the starting location
xl over the entire surface area of the light source. Since the location
of photon x0 depends on the initial emission location, this results in a
remarkably simple photon surface: an exact copy of the light source
(with the same surface normal), but positioned at the photon. This
allows creating single-scattering photon surfaces from arbitrarily
complicated mesh or parametric surface lights (see Fig. 4 for an
illustrative example using an emissive Stanford bunny).

Photon u orv Surfaces. Just as with the two-dimensional solid angle
domain, given some parametrization (u,v) 7→ xl , we can decom-
pose the 2D surface area of the light into individual parametric
dimensions. This allows us to create additional types of photon
surfaces which mix and match an analytically integratedu orv with
a propagation distance or emission angle ξa2 ∈ {tl ,ϕl , cosθl }. This
results in a photon surface with scaled normal n(ξ ∗a ) = ∂x0/∂u ×

∂x0/∂ξa2 = ∂xl /∂u × ∂x0/∂ξa2 for u, and analogously for v . While
this is theoretically possible for any type of parametrization and light
source shape, for simplicity we illustrate and implement this idea for
a rectangular light source and an orthonormal surface parametriza-
tion in Fig. 4, where we combine u or v with the first propagation
distance tl . This produces a single-scattering photon plane with
scaled normal identical to that of the generalized plane in Table 1,
but with ωj set to ωl , and the unit vectors defining the u,v axes
(u = ∂xl /∂u or v = ∂xl /∂v) taking the place of ωi . Note that
by rotating the u,v parametrization (Fig. 4d), we can arrive at a
continuum of differently oriented single-scattering photon planes.

6 MULTIPLE IMPORTANCE SAMPLING
We could now render volumetric transport using any one of the
many photon surfaces estimators. Unfortunately, each of the photon
surface estimators has a singularity where the Jacobian in the de-
nominator may approach zero. This means that certain (portions of)
photon surfaces can become arbitrarily bright, producing distracting

3+
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s

AVG 3-planesAVG 3-planes
Var: 1,0×Var: 1,0×

MIS 3-planesMIS 3-planes
Var: 0.320×Var: 0.320×

Si
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AVG (uα , t )-planesAVG (uα , t )-planes
Var: 1.0×Var: 1.0×

MIS (uα , t )-planesMIS (uα , t )-planes
Var: 0.300×Var: 0.300×

Fig. 3. We compare MIS (right column) to straight averaging (left column)
of generalized photon planes (top) and continuous single scattering planes
(bottom). MIS provides significant variance reduction at equal render time.

artifacts and high variance in the rendered image. By examining the
form of the Jacobian (22), such singularities can occur whenever a
photon surface is viewed at a grazing angle and also when the scaled
surface normal approaches zero length (e.g. at the apex of a photon
cone, or if the segments defining a photon plane are coplanar).
While we could remove the singularities by blurring the pho-

ton surfaces along their normals (as previously done for photon
planes [Bitterli and Jarosz 2017]), this would introduce bias. Instead,
since we now have many estimators at our disposal, each with sin-
gularities arising in complementary configurations, we show how
we can combine their respective strengths in an unbiased way using
multiple importance sampling [Veach and Guibas 1995]. This leads
to a significantly more robust combination than if we had simply
averaged the estimator contributions (Fig. 3).

6.1 Combining a Discrete Collection of Strategies
We first observe that each intersection between a camera ray and
photon surface corresponds to a standard light transport path (Fig. 2).
This allows us to interpret our photon surface estimators as unbiased
Monte Carlo path sampling strategies in standard path space.

Traditionally, the MIS weight of a sampling strategy a is defined
as the ratio of its PDF, pa (z), to the sum of the PDFs of other strate-
gies that can produce the same path z:wa (z) = p

β
a (z)

/ ∑m
k=1 p

β
k (z),

where β = 1 gives the balance heuristic. This computation requires
bringing each sampling PDF into a common space (e.g., solid-angle-
distance, or surface area product measure) for proper comparison.
While this is theoretically possible to do for our estimators, it is
cumbersome since each one was derived by marginalizing away
different integration dimensions, making their remaining domains
different. Instead, we can bypass the need to compute path PDFs
entirely by using the inverse estimator score as a proxy for the PDF,
as proposed by Jendersie [2018]. The power heuristic for a photon
surface which analytically integrates away dimensions ξa becomes:

wa (z) = ⟨I ⟩
−β
a (z)

/ m∑
k=1

⟨I ⟩
−β
k (z) , (25)

where ⟨I ⟩k is the score (16) returned by the k-th estimator for the
path z. Note that the sum over roots for curved photon surfaces (24)
actually considers multiple full paths, each requiring their own con-
tribution, Jacobian, and MIS weight computation. Photon surfaces
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Fig. 4. We show illustrations (top row) and renderings (bottom row; left/right half are low/high sample count) of single-scattering photon surfaces. Analytically
integrating the surface parametrization of a light source (left two columns) leads to (u , v)-photon surfaces that are shaped duplicates of the light source itself
(e.g. spherical, left top; bunny-shaped, left bottom; square, second column). Alternatively, we can integrate the distance along the first segment of the photon
subpath and only one dimension of the surface parametrization, leading to (u , t ) and (v , t )-planes that form lines at their intersection with the light source
(middle, middle right). For a square, there are infinitely many orthogonal parametrizations, and there exists a continuum of such (uα , t ) planes (right).

that could intersect the camera ray multiple times must be handled
with care, since each such intersection corresponds to a different
light path.We find the light paths corresponding to each intersecting
point and apply Eq. (25) for each one separately.

6.2 Combining a Continuum of Strategies
As mentioned in Sec. 5.2, there is a continuum of possible single-
scattering u- or v- planes, one for every possible rotation of the u,v
parametrization on the light source. This means that instead of a
large but countable number of strategies, we have a continuum of
strategies corresponding to the same light transport. Each one of
these possible strategies has a different photon surface normal and
Jacobian, and therefore singularity. While we could simply choose
a random u,v orientation for each emitted single-scattering plane
and use its corresponding scaled normal to compute the Jacobian,
each such Jacobian has the potential to go singular.

Tomitigate these singularities, we generalize the balance heuristic
to allow combining a continuum of strategies. We first interpret the
balance heuristic as a standard MC estimator which draws a sample
from the average PDF of the available strategies:

⟨I ⟩MIS =
���XXXqapa (z)∑m
k=1 qkpk (z)

f (z)

���XXXqapa (z)
=

f (z)∑m
k=1 qkpk (z)

, (26)

where qk = 1/m is the probability of selecting strategy k . By taking
the limit as the number of strategies goes to infinity, the denominator
becomes the average PDF of all possible randomly oriented single-
scattering planes. This average PDF leads to a remarkably simple
effective Jacobian (derivation in the supplemental document):

Jg
ξa
(ξ ∗a ) =

2
π

√
((u × ωl ) ·ψ1)2 + ((v × ωl ) ·ψ1)2 . (27)

In contrast to a single arbitrarily oriented photon plane, which can
go singular at any grazing angle, this Jacobian can only go singular
when both the terms in the square root go to zero, which happens
only if the camera directionψ1 is parallel to the emission direction
ωl . We can then treat this combined estimator as a single strategy,
denoted (uα , t)-planes, which we combine with (u,v)-planes (or
cones or spheres) for additional robustness.

7 IMPLEMENTATION
We implemented our new estimators in the open-source Tung-
sten [Bitterli 2018] renderer to leverage its reference implementation
of unbiased photon planes [Bitterli and Jarosz 2017] for compar-
ison. We implemented a wide assortment of the photon surfaces
predicted by our theory. For 3+ scattering we include (cosθ1,ϕ1)-
spheres, (t1,ϕ1)-cones, and (t2,ϕ1)-cylinders, as well as the three
possible ways of forming multi-scattering photon planes using the
last three propagation distances: (t1, t2)-, (t1, t3)-, and (t2, t3)-planes.
For brevity, we will simply refer to these as photon spheres, cones,
cyliders and “3-planes”. For 2+ scattering we can also use spheres,
cones, and cylinders, but only the original (t1, t2)-plane. For single
scattering we can use spheres and cones, and additionally include
four different single-scattering photon planes: (u,v)-, (u, tl )-, (v, tl )-,
as well as randomly rotated (u, tl )-planes.

After tracing a photon subpath, we iterate over all bounces, gen-
erate all supported photon surfaces, and store them in a uniform
grid acceleration structure. During rendering, we compute the in-
tersection between the camera ray and all stored photon surfaces.
To compute the contribution of a photon surface, we first com-
pute the full light path corresponding to each hitpoint, evaluate the
corresponding estimator (16), and compute its MIS weight (25) by
evaluating the scores of all other possible estimators for this same
light path. For the purposes of MIS, we only need to evaluate the
subset of the light path score affected by the differing Jacobians.

Handling visibility. Care must be taken to properly handle visibility
during both the rendering and photon tracing stages. An inter-
section between a camera ray and a photon surface determines a
complete light transport path. However, certain segments of the full
light path z differ from the originally constructed light and camera
subpaths, and need to be retraced to evaluate the visibility in the
path contribution. The number of needed visibility queries depends
directly on how far the last analytic integration dimension is up
the photon subpath, e.g., for a (t1, t2)-plane we only need to trace
one shadow ray, but (t1, t3)-, and (t2, t3)-planes both require two
shadow queries (see the light subpath overlays in Fig. 2 and Fig. 4).
For analogous reasons, photon surfaces need to be constructed using
the sampled free-flight distance in the medium (and not terminated
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ConesCones SpheresSpheres (u, t)-planes(u, t)-planes (v, t)-planes(v, t)-planes (u,v)-planes(u,v)-planesAVG(uα , t)-planesAVG(uα , t)-planes

MIS(Cones, Spheres)MIS(Cones, Spheres) MIS(All)MIS(All) MIS((u, t), (v, t), (u,v))MIS((u, t), (v, t), (u,v)) BeamsBeams Path TracingPath TracingMIS((uα , t), (u,v))MIS((uα , t), (u,v))

Fig. 5. We compare six of our single-scattering estimators individually (top row), their MIS combinations (bottom row), and path tracing and photon beams
baselines at equal time. We overlay variance relative to path tracing. MIS(All) excludes (uα , t )-planes, as these are redundant with (u , t ) and (v , t ). Although
estimators that use spinning may be visually converged, they suffer from singularities/excessive variance when used by themselves. This diminishes with MIS,
but the added cost does not always lead to an overall improvement. See supplemental for a table of overhead of individual estimators and MIS combinations.

at the surface intersection). Photon surfaces that use analytic dimen-
sions further up the photon subpath require this precaution for more
free-flight steps. Single-scattering surfaces are constructed without
considering visibility at all, since the one additional visibility query
is performed during camera tracing once the hitpoint is known. We
only included photon surfaces that integrate analytic dimensions as
close as possible to x0 to reduce the cost of visibility queries.

8 RESULTS
We compare our new estimators against prior work in a variety of
test scenes containing participating media. We render all images
using the same renderer and compare them at equal time. We list the
variance of each approach as an objective comparison metric which
we estimate by rendering 100 images with different random seeds
and computing the sample variance across all images. For unbiased
approaches, the variance is simultaneously the mean squared error,
but for photon beams, the variance underestimates the error.

The first row of Fig. 7 compares photon beams against our single-
scattering planes (Fig. 4 middle three columns) in an outdoor scene.
We show both a combination using MIS (right half) and a straight
average of estimator contributions (left half). We compare more
estimators and their MIS combinations in Fig. 5. Using MIS offers
significant variance reduction over both the averaged combination
and photon beams, demonstrating the benefit of our diverse surfaces
and their ability to use MIS. The benefit of single-scattering planes
over beams depends on the size of the light source. For scenes with
huge area lights like theClassRoom in Fig. 1 they provide significant
improvements, but for the relatively small lights of GasStation in
Fig. 7, they are outperformed by photon beams or our photon cones
and spheres. Fig. 6 evaluates how the light source size affects the
relative performance of single-scattering planes.
In Fig. 7 (rows 2–3), we compare Bitterli and Jarosz’s photon

planes to our 3-planes as well as a combination of 3-planes and
photon cones and cylinders (bottom half). These estimators require
at least 3 medium segments, and we only show medium transport
handled by all estimators. Using 3-planes by themselves offers sig-
nificant variance reduction over previous work due to the added
robustness of MIS. In the presence of anisotropy (third row), cones
and cylinders provide additional robustness and variance improve-
ment, although they are of limited usefulness in the isotropic case.
We refer the reader to the supplemental material for additional
results comparing our estimators with path tracing.

(uα , t)-planes + (u,v)-planes = Combination Beams
MISAVG MISAVG MISAVG

5
m
fp

0.2
m
fp

0.018×0.018×0.111×0.111× Var: 1.0×Var: 1.0×

1.043×1.043×4.583×4.583× Var: 1.0×Var: 1.0×

Fig. 6. We examine the effect of light source size (rows) on the relative per-
formance of continuously rotated (uα , t )-planes (first column) and (u , v)-
planes (second column). For each estimator we show its contribution indi-
vidually (left split, AVG), as well as weighted by MIS (right split). The third
column shows the weighted and unweighted combination of these two
estimators, as well as their variance (relative to beams). The (u , v)-planes
perform well for large light sources, but for smaller lights their weight dimin-
ishes compared to (uα , t )-planes, which start to resemble the photon beams
baseline, though without bias. Expanded comparison is in the supplemental.

Finally, we compare both single-scattering andmultiple-scattering
in Fig. 7 (rows 3-5) for both our single-scattering planes (top half)
and our 3-planes (bottom half) against standard photon beams and
planes. Because our combination of planes requires at least three
photon segments, it cannot be used for double scattering. We instead
combine photon cones, cylinders and standard planes to handle this
transport robustly. This combination of estimators handles all trans-
port supported by prior work at significantly reduced variance.

9 CONCLUSIONS, LIMITATIONS, & FUTURE WORK
We presented a new framework for deriving unbiased density es-
timators. By coupling the light- and camera- subpath endpoints
using a delta distribution, but pre-integrating three of its dimen-
sions analytically, we can construct an infinite collection of new
unbiased estimators of the standard volumetric path integral. Spe-
cific choices of the three analytic dimensions correspond to existing
unbiased estimators, but other choices allow estimating previously
unsupported transport. Moreover, each choice leads to an estimator
with different strengths and weaknesses, which we show how to
combine for increased robustness using MIS. While our method
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Fig. 7. We compare different estimators in volumetric scenes. We show the full transport (left), volumetric transport estimated by our estimators (middle) and
by previous photon beams/planes (right). The first row compares single scattering produced by our single scattering planes, without MIS (left half) and with
MIS (right half) to photon beams. The second and third rows compare different combinations of our photon surfaces to photon planes for an isotropic (second
row) and anisotropic phase function (third row) for triply scattered volumetric light transport. The remaining rows compare single scattering (top half) and
doubly scattered volumetric light transport for photon surfaces and photon beams/planes.
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Fig. 8. The “long" forms of some of our estimators can be applied to hetero-
geneous media, here comparing single scattering at equal photon count.

exhibits significantly lower variance compared to prior unbiased
density estimators, limitations and avenues for future work remain.

Heterogeneity. Our theory is not limited to homogeneous media;
however, several practical issues need to be overcome to translate
this theory into an efficient solution for general heterogeneous
media. Generally speaking, applying our approach to heterogeneous
media requires 1) evaluating transmittances; and (potentially) 2)
knowing and evaluating the free-flight distance PDFs.

For (t1, t2)-planes, (u, t)/(v, t)-planes, and cones, we can trivially
accommodate heterogeneity by simply using their “long” or “ex-
pected value” forms (c.f. Sec. 4) and incurring requirement 1). Fig. 8
shows a proof-of-concept implementation of this. However, evaluat-
ing the contribution of these estimators involves evaluating visibil-
ity and transmittance along one or two segments of the light path,
which adds non-negligible computational cost in heterogeneous
media. In addition, accelerations structures become less effective
with semi-infinite primitives, further degrading performance.

For estimators which use a numerical free-flight sampling step
after the last analytic dimension (e.g. photon spheres, cylinders, and
generalized photon planes), supporting heterogeneity becomesmore
challenging, as the free-flight PDF of these photon surfaces no longer
perfectly cancels the transmittance. This will generally increase
variance and also requires the ability to evaluate free-flight PDFs
within the medium. The latter prohibits the use of null-collision-
based sampling methods (which do not currently provide evaluable
PDFs), so methods such as raymarching (biased) or regular tracking
(computationally expensive) would need to be used instead.

Surface-to-medium transport. For the special case of direct emis-
sion, we derived photon surfaces for single scattering (Sec. 5.2),
but we currently lack a robust solution for medium interactions
immediately following scattering from a surface. Photon spinning
could be used for such transport, but care is needed to ensure the
BSDF is sampled well. This is trivial for the sphere estimator and
the cone estimator with symmetric BSDFs, but efficiently sampling
a cone from arbitrary BSDFs would require more work. This is less
of a problem in media, since phase functions are typically radially
symmetric. One potential solution is to perform analytic integration
in the space of random numbers rather than spherical coordinates,
akin to primary sample space methods [Kelemen et al. 2002]. This
could leverage all importance sampling already present in the ren-
dering system, but the resulting photon surfaces may be difficult to
intersect due to their complex shape. Fig. 9 demonstrates surface-
to-media transport using photon spheres and cones in a scene with
purely Lambertian surfaces, allowing our method to handle full
light transport in an unbiased way. Unfortunately, in the absence of

Full TransportFull Transport Surface-to-media TransportSurface-to-media Transport

Path TracingPath Tracing

OursOurs
Var: 1.39×Var: 1.39×

BeamsBeams

MIS(Spheres,Cones)MIS(Spheres,Cones)
Var: 7.08×Var: 7.08×

Fig. 9. While using photon cones and sphere for surface-to-media transport
(right) enables our approach to handle all light transport in themedium (left),
remaining singularities in the surface-to-media transport dominate variance
and allow path tracing and photon beams to outperform our approach.

other surface-to-media estimators, singularities remain in the MIS
combination, so this transport dominates the variance.
None of these techniques provide a benefit for scattering from

specular surfaces, and different techniques are required to render
effects such as volume caustics. A potential solution is to integrate
the dimensions immediately preceding specular interactions, but
the resulting photon surface would depend on the geometry of the
specular object and would be difficult to determine in general.

Medium-to-surface and surface-to-surface transport. The focus of
this paper was on participating media, and our method currently
does not provide a benefit to surface rendering. However, our frame-
work can readily derive practical “photon volumes” that induce
transport on surfaces. Indeed, virtual point lights are just one special
case from this family of estimators, and through choosing differ-
ent integration dimensions, we could derive estimators that could
remove the singularities encountered in VPLs in an unbiased way.

“Short” spheres. For highly anisotropic media, our photon spheres
become computationally inefficient since the path contribution is
small for a majority of the sphere even though the entire sphere
is stored and intersected during rendering. It may be possible to
create “spherical sector” estimators that integrate only parts of
the directional domain – akin to “short” transmittance estimators
– to concentrate effort where the phase function is high. This is
comparable to sampling with line segments rather than lines, and
would likely lead to similar variance tradeoffs [Singh et al. 2017].

MIS(uα , t) vs. MIS((u, t), (v, t)) planes. We use (u, t)- and (v, t)-
planes in Figs. 1 and 7 because we found (see Fig. 5 in supplemental)
this works slightly better than (uα , t)-planes. We suspect this is
because for quad lights, (uα , t)-planes can be narrow and make
worse angles with the camera compared to (u, t)- and (v, t)-planes
in our scenes.

Unbiased path sampling. Althoughwe focused on deriving density
estimators in this paper, our framework can be interpreted more
broadly as a method for deriving unbiased path sampling techniques.
These techniques operate in the standard path space, and they could
be readily combined with existing unbiased rendering techniques
such as bidirectional path tracing to improve robustness. In addition,
it is trivial to convert our photon surfaces into equivalent “sensor
surfaces” which could be used as alternative shadow connection
strategies in unbiased rendering algorithms.
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