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Photon Mapping

Volumetric Photon Mapping

— [Jensen & Christensen 98]}

Beam Radiance Estimate

— [Jarosz et al. '08]

Photon Beams

— [Jarosz et al. "11]

Analysis & MIS with unbiased methods
— [Krivanek et al. 2014}
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Photon plane—sensor beam (2DX 1D, 1D blur): We begin by insert-

ing the B-B2D density estimator Eq. (11) into Eq. (8) to obtain
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The last step was achieved by assuming [ > 2 and expanding C(¢;_1)

by one term. We will name the quantity inside the braces (D)éfégf),

which is a B-B2D estimator that performs one additional distance

sampling step. Expanding this quantity yields

O = 5o [ 10 {50854 F0 s, a9

The first term on the right-hand side is the result of distance sam-
pling, which is used to ob- Ky (%1, 5)

tain ¢;_;. We now replace this 735

distance sampling step with a }
deterministic “beam marching”

procedure (right). Instead of

sampling the location of a sin-

gle beam, we place a series of AfS\

beams at regular intervals along

= C(@p)C(t1-2) { (D)%’ BZD} C(5k-1)C(@' ).

u

the ray x;_» + a)l_lt(i) . We set

the ray offset of each beam to tf D = = iAt, where At is the step size.

We select a blurring kernel Wthh is uniform along one dimension,
Ky(x;, yx) = u~ 1K (%7, yi ), where u defines the uniform blur extent,
and the direction of the uniform blurring is as in the figure above.
The contribution of this estimator then becomes a sum,

Ki(xy,
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i=0

Because of the deterministic marching procedure, the inverse sam-
pling density p(t;_;) ! becomes At. We now choose the uniform blur
extent such that kernels of adjacent beams touch exactly, making

s,(c?_ = sgjl). This is achieved with u = At||w;_; X w;||. Substituting
into Eq. (15) and rearranging yields
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- Ki(x1, ¥i)
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with ]l éllD ||w;—1 X w;||. The constant At can be moved into the

braces and cancels. Taking the limit as At — 0 merges the beams
into a continuous photon plane with contribution

O5at = [ :}Gz_l)f(fz) % Lk fs)ds. (17)

Q-B1D

Photon plane—sensor beam (2DX 1D, 0D blur): In a similar fashion,
we now insert the B-B1D estimator (Eq. (12)) into Eq. (8) and expand
the distance throughput term to obtain the quantity
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Again, we replace distance sampling along #;_; with a determinis-
tic beam marching procedure. We choose a uniform blurring ker-
nel K1(x;,yx) = u~! with blur extent u. The direction of the blur
U= (w; X ("I’c)/ llew; X a),’c || is oriented orthogonal to the last photon
and camera subpath directions (see figure below).
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The contribution then becomes
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We choose u such that kernels of adjacent beams touch exactly when
viewed from “)I,c' This can be achieved by projecting the spacing be-
tween beams onto the blur direction, yielding u = At|1'i CW]_q | Since
only one kernel overlaps the camera ray, the summation disappears

Lk
f_Df(t)At {#} f(sp). (20)
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The constant At can be moved into the braces and cancels. Addition-
ally, the term ||w; X w;c || occurs both in ]é’_ng and the denominator

of 4, and can be cancelled. Taking the limit and simplifying yields

l k
(D)o sap = FE_)fE) pana fCY (21)

Q-BOD

where ]é éole = |wj_1 - (0] X w;c) is the Jacobian for 2DX1D cou-

pling with 0D blur, yielding a continuous photon plane.

Photon volume—sensor beam (3DX 1D, 0D blur): We insert and ex-

pand the Q-B1D estimator (17) into Eq. (8) to obtain (D)(Iz__;’llgz
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We replace distance sam-
pling along t;_, with de-
terministic “plane marching”
(left) and select a uniform
i At blurring kernel K (x;, yx) =
,L u~! with blur direction # =
(w1-1 X @p)/l|@)-1 X @y || nor-
mal to the plane.
The contribution from all planes is
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“Short” Beams
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Photon Estimators

“Short” Beams
[Krivanek et al. 2014]
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Summary

* "Marching” iIs a mechanism to obtain new photons
* Observation:
"Marching” replaces transmittance estimators

17



Transmittance Estimators

18



Transmittance Estimators

* Originate in neutron transport

18



Transmittance Estimators

* Originate in neutron transport
» Closely linked to photons
[Krivanek et al. 2014]
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Beyond Points and Beams

"Marching”: Replace one collision estimator with...

. .. . °
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. . Collisio 9 . 4 EXxpectedValue
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Collision estimator ®, K
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........... ‘
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Collision estimator

» But: Collision estimator on every segment!
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Photon Beams
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Photon Planes

* Plane geometry depends on estimators used
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Track-Length x Expected
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Beyond Points and Beams

* We can keep repeating this!
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About Marching

* Need careful photon arrangement to obtain limit
* Arrangement introduces Jacobian term

— Represents photon “squishing” and “stretching”

* Detalls: See paper
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About Bias

* Replacing distance sampling decreases bias
* Planes and beyond: Unbiased
» But: Bias <« Variance tradeoft

* In paper: Planes (0D Blur)
Planes (1D Blur)
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Summary

* Previous work:

Replace one collision with track-length/expected value

 Our work:

Repeat this process along preceding segments

* Can do this for both photons and cameras
* These new estimators are unbiased
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Error Analysis

» Analytic bias & variance of 27 different photons
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Results

* Two implementations of our method
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OpenGL Implementation
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* Can do this in the browser!

* Scene: ‘ D ———————
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Raytracing Implementation

» [wo-pass renderer:
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Evaluation

 Test bench of 7 scenes
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Quantitative comparison:
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Photon Planes (unbiased)
3.77% Speedup
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Conclusion

» (Generalize prior density estimators

» Replace distance sampling with T/E

* Asymptotic error improvement

 |n practice, 2 - 40x variance improvement
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Future VVork

* New volume photons lead to new surface photons

» What about phase functions?

— "Photon spinning”: Photon rings, cones, cylinders...
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Thanks!

* Try our WebGL Demo!

benedikt-bitterll.

Photon Points

(biased) - - :

Photon Beams
(biased)

Photon Planes
(unbiased)

Photon Volumes
(unbiased)

me/photon-planes

Light Path Length
© D

20 light bounces

Photon Type
Side-by-side
Points
Beams
Planes (unbiased)

Volumes (unbiased)

Resolution

820x461 1024x576 1280x720

Blur Radius

Phase Mean Cosine

Sample Count

210000/210000 rays traced; Progress: 100%

1600x900 1920x1080  4096x2160

Blur radius: 0.0010

Phase G: 0.00

10000 light paths
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