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Figure 1: Real-time render with direct light plus two path-traced indirect samples per pixel, and our result denoised in 10ms.

ABSTRACT
We propose a hybrid ray-tracing/rasterization strategy for real-
time rendering enabled by a fast new denoising method. We factor
global illumination into direct light at rasterized primary surfaces
and two indirect lighting terms, each estimated with one path-
traced sample per pixel. Our factorization enables efficient (biased)
reconstruction by denoising light without blurring materials. We
demonstrate denoising in under 10ms per 1280×720 frame, compare
results against the leading offline denoising methods, and include a
supplement with source code, video, and data.
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1 INTRODUCTION
Efficient CPU and GPU parallel ray casting engines such as Embree
and OptiX can now path trace global illumination in real time.
However, as these systems can currently only afford a few rays per
pixel, the results are too noisy for end-user applications and are
therefore only suitable for preview in content creation tools.

While ray budgets are likely to increase with GPU and CPU
performance, they are unlikely to increase ten-thousand-fold in the
near future, as required for convergence in path tracing. Even film
rendering does not actually trace to convergence, but instead post-
processes images with denoising filters [Goddard 2014]. Previous
high-quality denoising filters for path tracing are offline processes
that expect hundreds of samples per pixel. In this paper, we describe
a fast, new denoising filter based around a specific material (i.e.,
bidirectional reflectance distribution function; BRDF) factorization
as a major step towards real-time path tracing with temporal stabil-
ity and attractive, robust results. It runs two orders of magnitude
faster than leading offline denoisers and yields smoother results
without overblurring primary surfaces.

The primary contribution of this paper is a real-time spatio-
temporal denoising framework, which is derived from a factored
approximation of a material-based Monte Carlo integrator. The
approximation itself is the core concept that enables a specific way
of denoising images. An important key idea is the introduction of a
separate filtering path in the historical buffer for temporal denoising.
This makes it possible to reduce the bandwidth overhead of wide
bilateral filters applied to lighting on matte surfaces without flicker
or boiling.

Several principles and observations appropriate for real-time
systems underly our method. The detail in reflected light is more
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often due to material and direct illumination than to detail in the
lighting environment, and blurring is less perceptible for indirect
light than material. Under importance sampling, matte surfaces
sample the entire hemisphere and thus are very noisy–but that
same dispersion means the light can be aggressively denoised. Near-
specular reflections exhibit little noise under material importance
sampling because all incident rays are tightly clustered. Glossy
lobes already band-limit reflections proportional to their roughness,
so illumination from rougher surfaces can be denoised using wider
filters. Temporal filtering at primary surfaces of reflections must
be based on reprojection of the virtual position of reflected objects,
not the position of the primary surfaces. Temporal filtering fails
under disocclusion, but failure regions are predictable and can be
corrected by wide spatial filters.

Our method separates direct light, indirect light, and material
sampling at primary surfaces, applies to indirect light spatial and
temporal kernels that grow in expected blurry and undersampled
regions, and suppresses specific artifacts such as flickering high-
lights.

2 RELATEDWORK
Zwicker et al. [2015] and Gautron et al. [2014] survey the state
of denoising for global illumination, which has historically been
considered an offline problem since path tracing was itself an offline
process until recently.

At a high level, most methods leverage extremely wide filters
inspired by nonlocal means (NLM) [Rousselle et al. 2012], fitting a
zeroth- or first-order gradient across a discontinuously segmented
image. They determine the weighting of each sample to each term
using buffers of geometric, material, and other metadata such as
light visibility.We refer to the set of these and amotion vector buffer
as a G-buffer. Other edge-avoiding (e.g., Dammertz et al. [2010])
filters and some nascent machine-learning approaches [Kalantari
et al. 2015] also rely on wide filters with weights determined by the
G-buffer.

Offline denoising strategies also resemble the smaller-extent
cross bilateral filters [Eisemann and Durand 2004; Petschnigg et al.
2004] used for computational photography and real-time stochastic
transparency. Those have spatially-varying Gaussian kernels with
each tapweighted by a function of the G-buffer. Real-time stochastic
transparency and antialiasing also rely heavily on temporal filtering
and reprojection [Salvi 2016]. Bauszat et al. [2011] was the first to
apply those to Monte Carlo rendering for interactive denoising.

We extend that line of real-time temporal and bilateral filter work
to the domain of global illumination, derive a real-time sampling
strategy for the path tracer based on BRDF frequency decomposi-
tion (following Zimmer et al. [2015]), and design a denoising filter
chain. Our design is a robust and physically-based extension of ad
hoc denoising filters we previously shipped in the Unity 5 game
engine (2015) and applied in research papers (including Mara et al.
[2016] and McGuire et al. [2017]). The new method is slower, but
more robust and physically-based than those earlier methods.

Since our goal is real-time path traced indirect illumination,
we designed our filter kernels to eliminate visually-undesirable
artifacts with high performance; see related literature for matte
[Durand et al. 2005; Kontkanen et al. 2004; Soler et al. 2009] and

glossy [Tokuyoshi 2015] reconstruction filters designed instead to
minimize bias.

Schied et al. [2017] developed a real-time denoising method that
operates on fully-path traced images with one path per pixel. Their
research was independent and contemporary with ours and we
look forward to a comparison as future work.

3 ALGORITHM
3.1 Factored BRDF
We assume the common division of the BRDF f into layered “matte”
and “glossy” terms combined by Fresnel coefficients:

f (ω̂i, ω̂o) =m(ω̂i, ω̂o) (1 − F ( ω̂i, ω̂o))
2 + д(ω̂i, ω̂o)F (ω̂i, ω̂o) (1)

The glossy term д() may include a specular reflection impulse. The
matte termm() must vary slowly with respect to ω̂i and ω̂o, e.g.,
such as the Lambertian and Oren-Nayar models.

As an example, a typical real-time BRDF, Trowbridge-Reitz (a.k.a.
“GGX”) microfacet plus Lambertian and Schlick’s Fresnel approxi-
mation would be represented in this factorization as:

д(ω̂i, ω̂o) =
G(ω̂i, ω̂h)G(ω̂o, ω̂h)D(ω̂h)

4π |n̂ · ω̂o | |n̂ · ω̂i |
, m(ω̂i, ω̂o) =

ρL
π

(2)

where ω̂h = (ω̂i + ω̂o)/| |ω̂i + ω̂o | |, (3)

F (ω̂i, ω̂o) = F0 + (1 − F0) (1 −max (0, ω̂h · ω̂i))
5, (4)

F0 is the Fresnel coefficient at normal incidence, G is the Smith
geometry term, and D is the distribution of normals.

3.2 Factored Monte Carlo Integration
The standard material (vs. light- or multiple-) importance-sampling
Monte Carlo integrator for the outgoing radiance Lo at a point X
on a surface with primary visibility due to indirect light Li is:

Lo(X , ω̂o) =
1
2N

2N∑
i
Li(X , ω̂i )

f (ω̂i , ω̂o)|n̂ · ω̂i |

p(ω̂i )
, (5)

where each ω̂i of 2N incident directions is independently sampled
from distribution p(ω̂), and Li is computed by path tracing.

We can choose any distribution for p that is nonzero where f
is nonzero. The integrator will importance sample optimally with
respect to the material when p(ω̂) ∝ f (ω̂, ω̂o)|n̂ · ω̂ |. We can also
choose different sampling distributions for the different BRDF terms.
For the matte estimator, we choose

pm(ω̂) = max(ω̂ · n̂, 0)/π , (6)

to cancel the numerator. This is nearly optimal importance sampling
whenm() is nearly constant over the hemisphere. For the glossy
term, choose each incident direction ω̂j from some distribution pg
that is close to д() but efficient to sample, such as a power-cosine.
(We use index j for glossy to make clear that these directions are
sampled independently of the diffuse ones indexed by i .) The net
estimator is:

Lo(X , ω̂o) =
π
N

N∑
i
Li(X , ω̂i )(1 − F (ω̂i , ω̂o))

2m(ω̂i , ω̂o) (7)

+ 1
N

N∑
j
Li(X , ω̂j )

F (ω̂j , ω̂o)д(ω̂j , ω̂o) |n̂ · ω̂j |

pg(ω̂j )
. (8)
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3.3 Approximation
Because F andm both vary slowly in incident and outgoing vec-
tors, we can make the approximation of factoring them out of the
integrator to separate light and material. To do so, we must choose
a single representative incident vector ω̂i outside the summation.
We select ω̂i = ω̂s, the specular mirror reflection of ω̂o (this is a
common real-time Fresnel approximation).

This reduces the matte portion of the estimator (Eqn. 7) to:

(1 − F (ω̂s, ω̂o))2m(ω̂s, ω̂o)π

N

N∑
i
Li(X , ω̂i ). (9)

We make similar approximations for the glossy estimator. How-
ever, because we know that д may be very sensitive to the incident
direction ω̂j (i.e., it potentially contains narrow lobes), we cannot
bring д outside of the summation and must evaluate it for each
sample. The glossy portion of the estimator (Eqn. 8) is:

F (ω̂s, ω̂o)

N

N∑
j
Li(X , ω̂j )

д(ω̂j , ω̂o) |n̂ · ω̂j |

pg(ω̂j )
. (10)

We compute direct illumination at primary surfaces and then com-
pute the indirect contribution with N = 1 by path tracing. However,
before combining these terms, we apply a reconstruction filter to
the indirect light that effectively allows a very large N .

3.4 Reconstruction
Figure 2 describes our filter chain. Not shown in the diagram to
simplify the data paths, all bilateral filters also read the G-buffer
to weight taps by the camera-space plane distance in normals and
depth from the center sample.

The filter chain gathers illumination from spatio-temporally ad-
jacent samples, effectively varying position X and the implicit time
parameter within the integrator. This generally does not overblur
the image for three reasons: the approximations from the previous
section place the material detail features (matte reflectancem and
the glossy magnitude and albedo F0) outside of the summations;
the glossy spatial kernel width is chosen proportional to material
roughness; and we correct for motion via reverse reprojection [Ne-
hab et al. 2007; Salvi 2016; Yang et al. 2009]. It does blur out caustics,
which we considered too hard to reconstruct from sparse samples.

Matte filtering is on the left side of the diagram; it computes
irradiance. The temporal stage (3) reverse-reprojects the position of
a sample into the previous frame. It computes a confidence c ∈ [0, 1]
based on how closely the reprojected position matches the expected
value by:

c = h · smoothstep(d0,d1, |Xexpected − Xactual |) (11)

The temporal filter then clamps the historical radiance to the distri-
bution of the new 3×3 neighborhood and blends in h ·c of the value
stored in a historical buffer. Across all scenes, we empirically chose
h = 0.98, d0 = 0.05m, d0 = 0.07m: a smooth transition at 6 cm
from 0 to 95% hysteresis. The result passes on to the next stage, but
is also filtered (4) and blended back into the historical buffer with
hysteresis h.

Irradiance estimated from a small number of samples is extremely
noisy, but we also expect the underlying signal to vary slowly on flat
surfaces, so it is a good candidate for reconstruction by a wide filter
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Figure 2: Our rendering system. Thick gray data paths rep-
resent radiance buffers, thin blue arrows are G-buffer data.

kernel. While small cross-bilateral filter kernels can be separated
for efficiency into horizontal and vertical passes with only a small
amount of directional bias near edges, large filters produce large
streaks if separated. So, we apply a sparse cross-bilateral filter in
stage 4. This uses only 50 taps in a disk with diameter equal to 1%
of the screen width. The taps have temporally-varying positions
given by Mara et al.’s [Mara et al. 2016] AO pattern, which is an
efficient approximation of a blue noise distribution. Over several
frames, this gives quality comparable to the dense filter but is about
2.5× faster.

We apply that sparse cross-bilateral filter only to data cycled
back in to the historical buffer. This ordering is important–the cost
of blurring is amortized over time by the temporal filter, but newly-
sampled paths are never blurred out at this stage and noise from the
sparse taps has one additional frame to settle. This process means
that historical buffer is also repeatedly spatially filtered; since the
kernel underlying the bilateral weighting is Gaussian, it converges
to an ideal much wider Gaussian in flat regions such as ceilings.
Combined with the sparsity of the filter, that is similar to what non-
local means filtering accomplishes but with much lower bandwidth
and computation per frame.

Stage (6) is a 3 × 3 median filter. This is to remove transient,
single-sample bright “firefly” values from observation. We placed
it outside the history feedback loop to ensure those samples still
affect the running average but do not appear on screen; otherwise
the images would be too dark.

The final sparse bilateral filter (7) removes low-frequency noise
and fills temporal disocclusions. That filter’s radius r is determined
by the disocclusion detection stage (5), which computes r = (1 −
min2R×2R box(c)) × R by two simple 1D min passes. We empirically
chose maximum radius R =screen width/20. As this is the last place
to fill disocclusion holes, we expand the radius in (usually very
small) regions where temporal confidence c is low. Our results were
rendered with a multiplier of six where c < 1/2, but these values
were ad hoc and a more principled tuning is merited.
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Table 1: Run-time in milliseconds for real-time filter
pipeline stages at 1280×720.

Stage Time Stage Time

3. Matte Temporal 0.18 7. Matte Bilateral 3.36
4. Matte Pre-Bilateral 3.32 8. Glossy Temporal 0.23
5. Disocclusion Detection 0.76 9. Glossy H. Bilateral 0.34
6. Firefly Suppression 0.55 10. Glossy V. Bilateral 0.43

The glossy filtering on the right side of Figure 2 applies a tem-
poral filter (8) to the virtual positions of reflected objects [Zim-
mer et al. 2015], avoiding the ghosting of previous real-time re-
flection reprojection [Salvi 2016]. It applies the same color clamp-
ing and confidence measures as for (3). The output is then cross-
bilaterally filtered. After some experimentation, we chose for the
underlying Gaussian kernel a standard deviation in pixels of σ =
7roughness0.1 + ϵ . This is independent of resolution and distance
to the surface because having an optimally sharp filter for the pro-
jection of the BRDF’s impulse response would leave too few taps
in the distance, producing flicker.

This filter (9-10) is optimized for performance differently from
the matte spatial ones. Despite our reflected reprojection, temporal
filtering is less effective for glossy when objects are in motion. A
sparse cross-bilateral filter such as the ones employed on the matte
side of the process would leave visible sparse tap artifacts (appearing
like dithering patterns) for glossy terms when reprojection fails, so
we instead optimize the glossy spatial filter by separating it into
two 1D passes.

Note that there is no firefly suppression on the glossy side. Fire-
flies in path tracing generally arise from caustics (which only appear
on matte surfaces) and paths that were sampled with low probabil-
ity and then greatly weighted upwards by importance sampling to
compensate (which we limit within the path tracer, as is standard
production practice). The remaining bright spots in glossy reflec-
tions are often genuine glossy highlights, i.e., reflections of small
emissive objects, and should be preserved.

4 RESULTS
We evaluated our algorithm on several scenes from the literature.
Most were previously rigged with explicit area light sources for
“windows.” To make more realistic test cases for dynamic, real-time
rendering, we remodeled the windows as holes and inserted a sun
and bright sky. This is a harder scenario to denoise because there is
minimal direct illumination; most light is due to indirect paths that
happen to eventually pass through a window. Our implementation
used the open source path tracer, BSDF, and deferred shader from
the G3D Innovation Engine (https://casual-effects.com/g3d) in their
default configurations plus the code from our supplement.

Unless otherwise noted, all results are at 1280 × 720 resolution
with three-bounce illumination via one primary sample and two
indirect paths per pixel, and the denoising takes about 9ms on a
NVIDIA Titan X GPU. Performance varies by ±1ms with motion
and viewpoint because the filter widths change in response. Ta-
ble 1 gives a representative breakdown by stage, using the Horse
Room scene under fast camera motion. Ray generation time and
the incremental cost to deferred shading are negligible.

Figure 3: Matte filter stage outputs, with details underneath.

Figure 4: Indirect illumination input and output terms of the
denoising process for the Livingroom scene in Figure 1.

Figure 3 shows the output of each matte filter stage for the Cor-
nell Box. The initial spatio-temporal loop (3+4) removes significant
amounts of high-frequency noise. Firefly suppression (6) removes
flickering samples; while median denoising is not itself novel, plac-
ing it here ensures that very bright and dark samples are correctly
incorporated into the historical average without also appearing
immediately on the screen and flickering. The final sparse bilateral
stage (7) removes low-frequency noise.

Figure 4 shows the indirect illumination input and output for
Figure 1, with detail views zoomed in the top and bottom rows.

Figure 5 shows the disocclusion detection stage (5) expanding
the matte sparse bilateral kernel in areas where reprojection fails,
avoiding noise and ghosting (a-c), but slightly overblurring the
mirror (d). The motion here is 10× faster than in our video.

Figure 6 shows six scenes before and after real-time denoising
with a mixture of realistic materials and lighting configurations.
The brightest pixels in the left column are out of gamut, so those
image appear darker even though the average energy in each neigh-
borhood is the same before and after denoising. The ceilings are

https://casual-effects.com/g3d
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Figure 5: Horse room with rapid camera motion. Left) Noise and ghosting without disocclusion detection. Right) Improved.

the most difficult areas in these scenes. They are matte and have
relatively uniform indirect light, no direct light, and no texture.
This means that the samples are extremely noisy and any errors
are highly perceptible. These areas necessitated our wide matte
filter kernels. As future work, performance could be increased by
applying much narrower filters in other regions where texture or
direct illumination that masks the perception of indirect light noise.

Figure 7 compares the quality of the new real-time method
against leading offline methods: Nonlocal means (NLM) [Rousselle
et al. 2012], first-orderweighted linear regression (WRL) [Moon et al.
2014], and nonlinearly weighted first-order regression (NFOR) [Bit-
terli et al. 2016]. We reimplemented NLM and used the original
authors’ implementations for WRL and NFOR.

Because the offline methods were developed to work with mul-
tiple samples per pixel, we rendered these results with sixteen
samples per pixel. For our method, we simply ran at 4 × 4 higher
resolution and then box filtered each pixel. Our method integrates
historical data, so we ran it for 100 frames. We did not do this for the
offline methods because they have no designed path for incorporat-
ing such data. The figure and insets are at full resolution to support
zooming in the electronic version of this paper. Our supplement
also contains both 8-bit tone-mapped PNG images and the original
EXR radiance files for these results. Run times for processing these
high-resolution images are given in Table 2.

We suggest NFOR and our new method produce the best results
of the methods evaluated. Comparing just those two, our weakest
result is the overblurred statue face on Glossy Sponza (b) and our
strongest results are preserved material details in the Livingroom
(e) and indirect reflection detail in the Horse Room (c). Across all
experiments, our filters perform much better than previous work
on the walls and ceilings (see supplement), which is consistent with
residual low-frequency blotches for those methods in the literature.

Our results are much faster and generally smoother than the
previous methods, without losing detail in mirror reflections or
materials. This is possible through simultaneous co-design of the
renderer, indirect sampler, and filter.

However, the offline methods were designed to denoise primary
visibility and direct illumination as well and to run with hundreds
of samples per pixel. They are also able to denoise refraction, which
our method cannot. Transmissive objects in our results are rendered
with order-independent transparency.

Table 2: Run times in seconds for offline tracing at
1280×720×16.

Scene NLM WLR NFOR Ours

(a) Cornell Box 55 54 110 0.16
(b) Glossy Sponza 63 54 138 0.28
(c) Horse Room 60 52 129 0.31
(d) Bathroom 56 50 126 0.32
(e) Livingroom 58 50 119 0.31

In a scene with dynamic objects, the reprojection tests in the tem-
poral filters fail to eliminate stale illumination on surfaces that are
themselves unchanged in the camera view, but which should now
have different lighting conditions. However, the color distribution
clamping limits the error in this situation. There is some latency
for diffuse indirect illumination, but it occurs primarily on matte
surfaces. Sharp reflections, such as in mirrors, experience minimal
latency because they require little filtering in the first place. See
our video for examples.

5 DISCUSSION
5.1 Limitations
Where insufficient information is present due to high variance or
disocclusion, our design and tuning favor blurring to either high
or low frequency noise in space or time. For example, it overblurs
caustics and areas where shading is dominated by indirect visibility
instead of material or geometry. Distant glossy reflections are also
blurrier than close ones because the glossy spatial filter’s width
is independent of distance to the surface, which we found prefer-
able to distant flicker. We render refraction solely using forward
rasterization and a displacement shader.

5.2 Future Work
We anticipate a future in which ray tracing improvements yield a
budget of six to ten rays per pixel per real-time frame. Then, fast
denoising will be needed to make those results spatially smooth
and stable for entertainment applications.

Our algorithm is orders of magnitude faster and expects orders of
magnitude fewer rays than previous methods; it enables real-time
global illumination on a high-end machine today. However, 8-10ms
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is still expensive at 60 fps. Our method is bandwidth-limited, so we
hypothesize that the best route for further enhancing performance
is tuning for lower precision (e.g., R11G11B10F is twice as fast as our
RGB16F format, because of alignment constraints), and stratified,
quasi-Monte Carlo sampling for both the sparse filters and the path
tracer to speed convergence.
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